Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 16(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276538

RESUMEN

Exposure to B[a]P, the most characterized polycyclic aromatic hydrocarbon, significantly increases breast cancer risk. Our lab has previously reported that diallyl trisulfide (DATS), a garlic organosulfur compound (OSC) with chemopreventive and cell cycle arrest properties, reduces lipid peroxides and DNA damage in normal breast epithelial (MCF-10A) cells. In this study, we evaluated the ability of DATS to block the B[a]P-induced initiation of carcinogenesis in MCF-10A cells by examining changes in proliferation, clonogenic formation, reactive oxygen species (ROS) formation, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, and protein expression of ARNT/HIF-1ß, CYP1A1, and DNA POLß. The study results indicate that B[a]P increased proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing the protein expression of ARNT/HIF-1ß and CYP1A1 compared to the control. Conversely, DATS/B[a]P co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, and 8-OHdG levels compared to B[a]P alone. Treatment with DATS significantly inhibited (p < 0.0001) AhR expression, implicated in the development and progression of breast cancer. The CoTx also attenuated all the above-mentioned B[a]P-induced changes in protein expression. At the same time, it increased DNA POLß protein expression, which indicates increased DNA repair, thus causing a chemopreventive effect. These results provide evidence for the chemopreventive effects of DATS in breast cancer prevention.


Asunto(s)
Compuestos Alílicos , Anticarcinógenos , Neoplasias de la Mama , Ajo , Lesiones Precancerosas , Humanos , Femenino , Ajo/metabolismo , Antioxidantes/farmacología , Benzo(a)pireno/toxicidad , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Apoptosis , Sulfuros/farmacología , Células Epiteliales/metabolismo , Anticarcinógenos/farmacología , Reparación del ADN , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/prevención & control , ADN
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255999

RESUMEN

Benzo[a]pyrene (B[a]P) is the most characterized polycyclic aromatic hydrocarbon associated with breast cancer. Our lab previously reported that the organosulfur compound (OSC), diallyl trisulfide (DATS), chemoprevention mechanism works through the induction of cell cycle arrest and a reduction in oxidative stress and DNA damage in normal breast epithelial cells. We hypothesize that DATS will inhibit B[a]P-induced cancer initiation in premalignant breast epithelial (MCF-10AT1) cells. In this study, we evaluated the ability of DATS to attenuate B[a]P-induced neoplastic transformation in MCF-10AT1 cells by measuring biological endpoints such as proliferation, clonogenicity, reactive oxygen species (ROS) formation, and 8-hydroxy-2-deoxyguanosine (8-OHdG) DNA damage levels, as well as DNA repair and antioxidant proteins. The results indicate that B[a]P induced proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing AhR, ARNT/HIF-1ß, and CYP1A1 protein expression compared with the control in MCF-10AT1 cells. B[a]P/DATS's co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, AhR protein expression, and 8-OHdG levels compared with B[a]P alone and attenuated all the above-mentioned B[a]P-induced changes in protein expression, causing a chemopreventive effect. This study demonstrates, for the first time, that DATS prevents premalignant breast cells from undergoing B[a]P-induced neoplastic transformation, thus providing more evidence for its chemopreventive effects in breast cancer.


Asunto(s)
Compuestos Alílicos , Neoplasias de la Mama , Ajo , Lesiones Precancerosas , Sulfuros , Humanos , Femenino , Antioxidantes , Especies Reactivas de Oxígeno , Daño del ADN , Lesiones Precancerosas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Estrés Oxidativo
3.
Biomolecules ; 12(3)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35327563

RESUMEN

Alzheimer's and Parkinson's diseases are the two most common forms of neurodegenerative diseases. The exact etiology of these disorders is not well known; however, environmental, molecular, and genetic influences play a major role in the pathogenesis of these diseases. Using Alzheimer's disease (AD) as the archetype, the pathological findings include the aggregation of Amyloid Beta (Aß) peptides, mitochondrial dysfunction, synaptic degradation caused by inflammation, elevated reactive oxygen species (ROS), and cerebrovascular dysregulation. This review highlights the neuroinflammatory and neuroprotective role of epigallocatechin-3-gallate (EGCG): the medicinal component of green tea, a known nutraceutical that has shown promise in modulating AD progression due to its antioxidant, anti-inflammatory, and anti-aging abilities. This report also re-examines the current literature and provides innovative approaches for EGCG to be used as a preventive measure to alleviate AD and other neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Catequina/análogos & derivados , Humanos , Enfermedades Neuroinflamatorias , Neuroprotección , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
4.
Nutrients ; 14(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35010954

RESUMEN

To date, the tumor microenvironment (TME) has gained considerable attention in various areas of cancer research due to its role in driving a loss of immune surveillance and enabling rapid advanced tumor development and progression. The TME plays an integral role in driving advanced aggressive breast cancers, including triple-negative breast cancer (TNBC), a pivotal mediator for tumor cells to communicate with the surrounding cells via lymphatic and circulatory systems. Furthermore, the TME plays a significant role in all steps and stages of carcinogenesis by promoting and stimulating uncontrolled cell proliferation and protecting tumor cells from the immune system. Various cellular components of the TME work together to drive cancer processes, some of which include tumor-associated adipocytes, fibroblasts, macrophages, and neutrophils which sustain perpetual amplification and release of pro-inflammatory molecules such as cytokines. Thymoquinone (TQ), a natural chemical component from black cumin seed, is widely used traditionally and now in clinical trials for the treatment/prevention of multiple types of cancer, showing a potential to mitigate components of TME at various stages by various pathways. In this review, we focus on the role of TME in TNBC cancer progression and the effect of TQ on the TME, emphasizing their anticipated role in the prevention and treatment of TNBC. It was concluded from this review that the multiple components of the TME serve as a critical part of TNBC tumor promotion and stimulation of uncontrolled cell proliferation. Meanwhile, TQ could be a crucial compound in the prevention and progression of TNBC therapy through the modulation of the TME.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Benzoquinonas/uso terapéutico , Fitoterapia , Neoplasias de la Mama Triple Negativas/prevención & control , Femenino , Humanos , Microambiente Tumoral/efectos de los fármacos
5.
BMC Complement Altern Med ; 16(1): 467, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27846826

RESUMEN

BACKGROUND: Acute systemic inflammatory response syndrome arising from infection can lead to multiple organ failure and death, with greater susceptibility occurring in immunocompromised individuals. Moreover, sub-acute chronic inflammation is a contributor to the pathology of diverse degenerative diseases (Parkinson's disease, Alzheimer's disease and arthritis). Given the known limitations in Western medicine to treat a broad range of inflammatory related illness as well as the emergence of antibiotic resistance, there is a renewed interest in complementary and alternative medicines (CAMs) to achieve these means. METHODS: A high throughput (HTP) screening of >1400 commonly sold natural products (bulk herbs, cooking spices, teas, leaves, supplement components, nutraceutical food components, fruit and vegetables, rinds, seeds, polyphenolics etc.) was conducted to elucidate anti-inflammatory substances in lipopolysaccharide (LPS) (E. coli serotype O111:B4) monocytes: RAW 264.7 macrophages [peripheral], BV-2 microglia [brain]) relative to hydrocortisone, dexamethasone and L-N6-(1Iminoethyl)lysine (L-NIL). HTP evaluation was also carried out for lethal kill curves against E.coli 0157:H7 1x106 CFU/mL relative to penicillin. Validation studies were performed to assess cytokine profiling using antibody arrays. Findings were corroborated by independent ELISAs and NO2-/iNOS expression quantified using the Griess Reagent and immunocytochemistry, respectively. For robust screening, we developed an in-vitro efficacy paradigm to ensure anti-inflammatory parameters were observed independent of cytotoxicity. This caution was taken given that many plants exert tumoricidal and anti-inflammatory effects at close range through similar signaling pathways, which could lead to false positives. RESULTS: The data show that activated BV-2 microglia cells (+ LPS 1µg/ml) release >10-fold greater IL-6, MIP1/2, RANTES and nitric oxide (NO2-), where RAW 264.7 macrophages (+ LPS 1µg/ml) produced > 10-fold rise in sTNFR2, MCP-1, IL-6, GCSF, RANTES and NO2-. Data validation studies establish hydrocortisone and dexamethasone as suppressing multiple pro-inflammatory processes, where L-NIL suppressed NO2-, but had no effect on iNOS expression or IL-6. The screening results demonstrate relative few valid hits with anti-inflammatory effects at < 250µg/ml for the following: Bay Leaf (Laurus nobilis), Elecampagne Root (Inula helenium), Tansy (Tanacetum vulgare),Yerba (Eriodictyon californicum) and Centipeda (Centipeda minima), Ashwagandha (Withania somnifera), Feverfew (Tanacetum parthenium), Rosemary (Rosmarinus officinalis), Turmeric Root (Curcuma Longa), Osha Root (Ligusticum porteri), Green Tea (Camellia sinensis) and constituents: cardamonin, apigenin, quercetin, biochanin A, eupatorin, (-)-epigallocatechin gallate (EGCG) and butein. Natural products lethal against [E. coli 0157:H7] where the LC50 < 100 µg/ml included bioactive silver hydrosol-Argentyn 23, green tea (its constituents EGCG > Polyphenon 60 > (-)-Gallocatechin > Epicatechin > (+)-Catechin), Grapeseed Extract (Vitis vinifera), Chinese Gallnut (its constituents gallic acid > caffeic acid) and gallic acid containing plants such as Babul Chall Bark (Acacia Arabica), Arjun (Terminalia Arjuna) and Bayberry Root Bark (Morella Cerifera). CONCLUSIONS: These findings emphasize and validate the previous work of others and identify the most effective CAM anti-inflammatory, antibacterial compounds using these models. Future work will be required to evaluate potential combination strategies for long-term use to prevent chronic inflammation and possibly lower the risk of sepsis in immunocompromised at risk populations.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Productos Biológicos/farmacología , Escherichia coli/efectos de los fármacos , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Sepsis/inmunología , Animales , Evaluación Preclínica de Medicamentos , Escherichia coli/inmunología , Ensayos Analíticos de Alto Rendimiento , Humanos , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Ratones , Microglía/inmunología , Células RAW 264.7 , Sepsis/tratamiento farmacológico , Sepsis/microbiología
6.
Anticancer Res ; 34(6): 2763-70, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24922637

RESUMEN

Monocyte chemotactic protein-1 (MCP-1/CCL2) is released by tumor tissues, serving as a potent chemokine enabling directional homing of mononuclear cells to tumor tissue, which subsequently differentiate into tumor-associated macrophages (TAMs) via TGFß1 signaling. TAMs readily invade tumor tissue and continue to synthesize pro-oncogenic proteins including tumor growth factors, matrix proteases (metastasis), angiogenic factors (neovascularization) and CCL2. Substances, which can attenuate or block the initial release of CCL2 have been shown to prevent cancer-associated inflammative pro-oncogenic processes. In the current study, we investigated the effects of the organosulfur compound diallyl disulfide (DADS), a natural constituent of Allium sativum (garlic) on suppression of TNFα-induced release of CCL2 from triple-negative human breast tumor (MDA-MB-231) cells. Using an initial adipokine/chemokine protein panel microarray, the data show a predominant expression profile in resting/untreated MDA-MB-231 cells for sustained release of IL6, IL8, plasminogen Activator Inhibitor 1 and TIMP1/2. Treatment with TNFα (40 ng/ml) had no effect on many of these molecules, with a single major elevation in release of CCL2 (~1,300-fold up-regulation). TNFα-induced CCL2 release was reversed by a sub-lethal concentration of DADS (100 µM), evident in antibody based assays. These findings provide evidence to support another avenue of anticancer/chemopreventative properties attributable to garlic constituents through immunomodulation.


Asunto(s)
Compuestos Alílicos/farmacología , Antineoplásicos/farmacología , Quimiocina CCL2/metabolismo , Disulfuros/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Adipoquinas/metabolismo , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Femenino , Ajo/química , Humanos , Análisis por Matrices de Proteínas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/farmacología
7.
Nutr Cancer ; 64(7): 1112-21, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23006051

RESUMEN

Diallyl disulfide (DADS), a garlic organosulfur compound, has been researched as a cancer prevention agent; however, the role of DADS in the suppression of cancer initiation in nonneoplastic cells has not been elucidated. To evaluate DADS inhibition of early carcinogenic events, MCF-10A cells were pretreated (PreTx) with DADS followed by the ubiquitous carcinogen benzo(a)pyrene (BaP), or cotreated (CoTx) with DADS and BaP for up to 24 h. The cells were evaluated for changes in cell viability/proliferation, cell cycle, induction of peroxide formation, and DNA damage. BaP induced a statistically significant increase in cell proliferation at 6 h, which was attenuated with DADS CoTx. PreTx with 6 and 60 µM of DADS inhibited BaP-induced G2/M arrest by 68% and 78%, respectively. DADS, regardless of concentration or method, inhibited BaP-induced extracellular aqueous peroxide formation within 24 h. DADS attenuated BaP-induced DNA single-strand breaks at all time points through both DADS Pre- and CoTx, with significant inhibition for all treatments sustained after 6 h. DADS was effective in inhibiting BaP-induced cell proliferation, cell cycle transitions, reactive oxygen species, and DNA damage in a normal cell line, and thus may inhibit environmentally induced breast cancer initiation.


Asunto(s)
Compuestos Alílicos/farmacología , Benzo(a)pireno/toxicidad , Carcinógenos/toxicidad , Disulfuros/farmacología , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quimioprevención , Daño del ADN/efectos de los fármacos , Ajo/química , Humanos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA